Using Group Theoretic Method to Solve Multi-Dimensional Diffusion Equation

نویسندگان

  • Mina B. ABD-EL-MALEK
  • Nagwa A. BADRAN
  • Hossam S. HASSAN
چکیده

The nonlinear diffusion equation arises in many important areas of science and technology such as modelling of dopant diffusion in semiconductors. We give analytical solution to N -dimensional radially symmetric nonlinear diffusion equation. The transformation group theoretic approach is applied to analysis of this equation. The one-parameter group transformation reduces the number of independent variables by one, and the governing partial differential equation with the boundary conditions reduce to an ordinary differential equation with the appropriate boundary conditions. Effect of the time t on the concentration diffusion function C(r, t) has been studied and the results are plotted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

Numerical solution of two-dimensional integral equations of the first kind by multi-step methods

‎‎‎In this paper‎, ‎we develop multi-step methods to solve a class of two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the first kind‎. ‎Here‎, ‎we convert a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then we solve the resulted equation numerically by multi-step methods‎. ‎We also verify convergence and error analysis of the method‎. ‎At t...

متن کامل

Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction

A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003